99 research outputs found

    A phonologically congruent sound boosts a visual target into perceptual awareness

    Get PDF
    Capacity limitations of attentional resources allow only a fraction of sensory inputs to enter our awareness. Most prominently, in the attentional blink the observer often fails to detect the second of two rapidly successive targets that are presented in a sequence of distractor items. To investigate how auditory inputs enable a visual target to escape the attentional blink, this study presented the visual letter targets T1 and T2 together with phonologically congruent or incongruent spoken letter names. First, a congruent relative to an incongruent sound at T2 rendered visual T2 more visible. Second, this T2 congruency effect was amplified when the sound was congruent at T1 as indicated by a T1 congruency × T2 congruency interaction. Critically, these effects were observed both when the sounds were presented in synchrony with and prior to the visual target letters suggesting that the sounds may increase visual target identification via multiple mechanisms such as audiovisual priming or decisional interactions. Our results demonstrate that a sound around the time of T2 increases subjects' awareness of the visual target as a function of T1 and T2 congruency. Consistent with Bayesian causal inference, the brain may thus combine (1) prior congruency expectations based on T1 congruency and (2) phonological congruency cues provided by the audiovisual inputs at T2 to infer whether auditory and visual signals emanate from a common source and should hence be integrated for perceptual decisions

    Distinct computational principles govern multisensory integration in primary sensory and association cortices

    Get PDF
    Human observers typically integrate sensory signals in a statistically optimal fashion into a coherent percept by weighting them in proportion to their reliabilities [1, 2, 3 and 4]. An emerging debate in neuroscience is to which extent multisensory integration emerges already in primary sensory areas or is deferred to higher-order association areas [5, 6, 7, 8 and 9]. This fMRI study used multivariate pattern decoding to characterize the computational principles that define how auditory and visual signals are integrated into spatial representations across the cortical hierarchy. Our results reveal small multisensory influences that were limited to a spatial window of integration in primary sensory areas. By contrast, parietal cortices integrated signals weighted by their sensory reliabilities and task relevance in line with behavioral performance and principles of statistical optimality. Intriguingly, audiovisual integration in parietal cortices was attenuated for large spatial disparities when signals were unlikely to originate from a common source. Our results demonstrate that multisensory interactions in primary and association cortices are governed by distinct computational principles. In primary visual cortices, spatial disparity controlled the influence of non-visual signals on the formation of spatial representations, whereas in parietal cortices, it determined the influence of task-irrelevant signals. Critically, only parietal cortices integrated signals weighted by their bottom-up reliabilities and top-down task relevance into multisensory spatial priority maps to guide spatial orienting

    Conditioned sounds enhance visual processing

    Get PDF
    This psychophysics study investigated whether prior auditory conditioning influences how a sound interacts with visual perception. In the conditioning phase, subjects were presented with three pure tones ( =  conditioned stimuli, CS) that were paired with positive, negative or neutral unconditioned stimuli. As unconditioned reinforcers we employed pictures (highly pleasant, unpleasant and neutral) or monetary outcomes (+50 euro cents, −50 cents, 0 cents). In the subsequent visual selective attention paradigm, subjects were presented with near-threshold Gabors displayed in their left or right hemifield. Critically, the Gabors were presented in synchrony with one of the conditioned sounds. Subjects discriminated whether the Gabors were presented in their left or right hemifields. Participants determined the location more accurately when the Gabors were presented in synchrony with positive relative to neutral sounds irrespective of reinforcer type. Thus, previously rewarded relative to neutral sounds increased the bottom-up salience of the visual Gabors. Our results are the first demonstration that prior auditory conditioning is a potent mechanism to modulate the effect of sounds on visual perception

    When sentences live up to your expectations

    Get PDF
    Speech recognition is rapid, automatic and amazingly robust. How the brain is able to decode speech from noisy acoustic inputs is unknown. We show that the brain recognizes speech by integrating bottom-up acoustic signals with top-down predictions. Subjects listened to intelligible normal and unintelligible fine structure speech that lacked the predictability of the temporal envelope and did not enable access to higher linguistic representations. Their top-down predictions were manipulated using priming. Activation for unintelligible fine structure speech was confined to primary auditory cortices, but propagated into posterior middle temporal areas when fine structure speech was made intelligible by top-down predictions. By contrast, normal speech engaged posterior middle temporal areas irrespective of subjects’ predictions. Critically, when speech violated subjects’ expectations, activation increases in anterior temporal gyri/sulci signalled a prediction error and the need for new semantic integration. In line with predictive coding, our findings compellingly demonstrate that top-down predictions determine whether and how the brain translates bottom-up acoustic inputs into intelligible speech

    Comparing TMS perturbations to occipital and parietal cortices in concurrent TMS-fMRI studies-Methodological considerations

    Get PDF
    Neglect and hemianopia are two neuropsychological syndromes that are associated with reduced awareness for visual signals in patients' contralesional hemifield. They offer the unique possibility to dissociate the contributions of retino-geniculate and retino-colliculo circuitries in visual perception. Yet, insights from patient fMRI studies are limited by heterogeneity in lesion location and extent, long-term functional reorganization and behavioural compensation after stroke. Transcranial magnetic stimulation (TMS) has therefore been proposed as a complementary method to investigate the effect of transient perturbations on functional brain organization. This concurrent TMS-fMRI study applied TMS perturbation to occipital and parietal cortices with the aim to 'mimick' neglect and hemianopia. Based on the challenges and interpretational limitations of our own study we aim to provide tutorial guidance on how future studies should compare TMS to primary sensory and association areas that are governed by distinct computational principles, neural dynamics and functional architecture

    Distinct neural mechanisms and temporal constraints govern a cascade of audiotactile interactions

    Get PDF
    Synchrony is a crucial cue indicating whether sensory signals are caused by single or independent sources. In order to be integrated and produce multisensory behavioural benefits, signals must co-occur within a temporal integration window (TIW). Yet, the underlying neural determinants and mechanisms of integration across asynchronies remain unclear. This psychophysics and electroencephalography study investigated the temporal constraints of behavioural response facilitation and neural interactions for evoked response potentials (ERP), inter-trial coherence (ITC), and time-frequency (TF) power. Participants were presented with noise bursts, ‘taps to the face’, and their audiotactile (AT) combinations at seven asynchronies: 0, ±20, ±70, and ±500 ms. Behaviourally we observed an inverted U-shape function for AT response facilitation, which was maximal for synchronous AT stimulation and declined within a ≤70 ms TIW. For ERPs, we observed AT interactions at 110 ms for near-synchronous stimuli within a ≤20 ms TIW and at 400 ms within a ≤70 ms TIW consistent with behavioural response facilitation. By contrast, AT interactions for theta ITC and ERPs at 200 ms post-stimulus were selective for ±70 ms asynchrony, potentially mediated via phase resetting. Finally, interactions for induced theta power and alpha/beta power rebound emerged at 800-1100 ms across several asynchronies including even 500 ms auditory leading asynchrony. In sum, we observed neural interactions that were confined to or extending beyond the behavioural TIW or specific for ±70 ms asynchrony. This diversity of temporal profiles and constraints demonstrates that multisensory integration unfolds in a cascade of interactions that are governed by distinct neural mechanisms
    • …
    corecore